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Microwave instability beyond threshold

S. A. Heifets
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
(Received 29 February 1996

Stability of the steady-state bunch distribution described by the Haissinski so[utidtaissinski, Nuovo
Cimento18B, 72 (1973] is studied above the threshold of microwave instability. It is shown that instability
may lead to a new self-consistent state corresponding to particles trapped in a separatrix of an unstable mode.
The free energies of the two solutions are compared. The relaxation oscillations between the new and Haissin-
ski solutions are possible and may be related to the sawtooth instability observed recently in the experiments
[P. Krejcik et al., (unpublished]. [S1063-651%96)11109-0

PACS numbds): 41.85—p

I. INTRODUCTION linearized Vlasov equation. This allows us to find a threshold
Ng, spectrum of the eigenmodes, and the rise time of insta-
The microwave instability is one of a few problems of bility. This approach does not, however, describe the dynam-
accelerator physics which is not fully understood today. Thdcs at large amplitudes and is not sufficient to explain the
instability is usually described as an increase of the rms ergssential nonlinear phenomena, such as the sawtooth insta-
ergy Spread of a bunch Wheﬂg, the number of particles per b|||ty Numerical tracking is not very efficient in describing
bunch, exceeds some threshold value. Because the equilifiie sawtooth instability, probably because the number of par-
rium temperature is determined by the damping and the noisécles involved is a small part of the total bunch population
of the synchrotron radiation, which is normally independentand because simulations with a realistic damping time are
of Ng, increase of the temperature indicates that there i§omputationally prohibitive. _
some additional noise or a mechanism which pumps energy The sawtooth .|nstab|I|ty indicates thg existence of two
from the longitudinal motion to the uncorrelated single- Steady state solutions for larg . Depending on the damp-
particle motion. ing time, the system may have relaxation oscillations be-
Recent experimentf2,3] found new features of bunch tween these two solutions or may drift adiabatically from one
behavior at the threshold of the instability, such as relaxatiof$olution to another one provided the damping rate is large
oscillations of the rms bunch lengtthe sawtooth instability ~€nough. Recently, Baartman and Dyachké\b] suggested a
of the SLAC damp|ng ring and |arge periodic oscillations m0de| Of the SaWtOOth InStabI|Ity dr|Ven by quantum ﬂUCtUa'
of the rms size and bunch centroid in LEP. Similar phenomiion in a case of a self-consistent potential having two
ena were also previously observed in different laboratorieghinima. The mechanism considered in this paper is different;
Such a behavior is not trivial for a system with damping,it is related to a nonlinear self-consistent regime arising as a
which usua”y goes, after some relaxation time, to an equiresult of a nonlinear resonance. Consideration fOllOWS the
librium steady state. It is reasonable to think that these phePapers of Shonfeld6] and Meller[7]. Although this ap-
nomena are related to the microwave instability and can giv@roach does not describe the full time evolution of a bunch,
insight to its origin. In fact, the new instabilities can be con-it gives some understanding of the nonlinear dynamics of the
sidered as a special case of the microwave instability wheHnstable modes and, hence, is complimentary to the studies
only a few azimuthal modes are involved, which may sig-of the linearized Viasov equation.
nificantly simplify theoretical consideration of the problem.
A possible phenomenological explanation of the sawtooth [l. HAISSINSKI SOLUTION
instability may be based on the idea of the “overshoot phe- ) o ) . )
nomena,” where an unstable mode is stabilized by nonlinear A Single-bunch longitudinal dynamics of particles in a
processes at large amplitudes or by bunch heating producé&ficrage ring may be described by canonical variabilgs
by decaying mode. Radiation damping and filamentatiofVherex=z/oy is the position of a particle in a bunch in units
brings the system back to original state. The relaxation osOf the zeros current rms bunch length, and the canonically
cillations may arise under proper relationship between th&onjugated momentum p=—adl/ao, proportional  to
growth rate of an unstable mode, its filamentation time, and®=AE/E and the momentum compaction facter The co-
the synchrotron radiation damping time. When there ar@rdinatex=0 corresponds to the equilibrium rf phage;
many interacting unstable modes, the sawtooth instability bex>0 for a particle in the head of a bunch. The Hamiltonian
comes a microwave instability. Although generically this is ain these variables is
correct picture, a detailed model of the processes is needed. 5
Our attempts to ob;am_the savvt_ooth beha}wor within the qua- H(x,p,t)= P +UGG, UGD=Ug+Uy. (1)
silinear approximation in numerical experiments were unsuc- 2
cessful: the system asymptotically approaches a steady-state
with higher temperature. The total potentialU(x) is the sum of the rf potential
Study of the microwave instability is usually based on theU ;= w%SXZ/ZCS and the self-consistent potentidly,:
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Here wos=wye, ¥s iS the zeroth current synchrotron fre-

quency, the distribution functiop(x,t)=[dpp(Xx,p,t) is Here n=ow/w,, Zo=1207(), and the “effective imped-
normalized to 1fdxp(x)=1, andS(z) is an integral of the ance” (Z/n).y is related to the machine impedanZm ei-
wake functionW(z), S(z)=[dz’W(z'). W(z) defines en- ther through the experimental “SPEAR scaling” or by de-
ergy loss per turn of a particle trailing another particle at thefining Z/n as weighted with the bunch spectrum. Other
distancez: AE(z)=—Nye?W(z). The wakeW(z)=0 for  criteria have been discussed as well that, i.e., the instability
z<0, and can be expressed in terms of the beam impedan@gcurs when the slope of the total voltage becomes zero
Z(w) that has poles in the upper plane of The factorn  Wwithin a bunch length. Bang9] successfully used this crite-

depends on the number of particles per bulNgh rion for calculating the threshold of the microwave instabil-
ity for the SLC damping ring. There have been attempts to
aNyrg relate the threshold of the instability to the appearance of the

3 second minima in the potential well at large bunch currents.
Another criterion of the threshold is given By, at which
The distribution functionp(x,p,t) is a solution of the the synchrotron frequency as a function of amplitude has

- 27Ryo3:’

Fokker-Plank equation extremum, dw(J)/dJ=0. These criteria give different
thresholds of instability. For example, for a self-consistent

ap 3%p d potential approximated by a polynomial

- TiH.pi= Da_DZ’LVd%pP ; (4) U(x) =x?[ w3/2+ ax/3+ Bx?/4] with parameters varying

with N, ' changes sign at®/(Bw?)>0.9, the second
which includes effects of diffusion and damping due to syn-minimum appears at?/(Bw?)>4.0, and the potential at this
chrotron radiation not described by the Hamiltonian. Deriva-minimum is smaller thatJ (x) at a?/(Bw?)>4.5.
tion of the Fokker-Plank equation and further references can Study of the stability usually is based on the linearized

be found in the recent papgs]. Vlasov equation obtained from Eq(4) for small
Haissinski solutior{1] is the steady state solution of Eq. f(x,p,t)=p(x,p,t)—pu(X,p), neglecting the right-hand
4), side(RHY) of the equation. This gives a homogeneous equa-

tion which defines azimuthal and radial eigenmodes of per-
turbation, and gives their frequencies. The onset of the mi-

PH(X.P)= Zexp— H(P)/T, ®) crowave instability is related to a mode-coupling, when some
of the eigenfrequencies become complex.
where T=D/vy4. Equation (5) can be factorized More detailed phenomenology of the microwave instabil-

pu(x,p)=p(p)p(x). Hence,(p?)=T(os3 a)? and is inde- ity is based on the quasilinear approach that takes into ac-
pendent on the distortion of the self-consistent potentiatount the feedback effect of the growing unstable mode on
U(x). The distribution function is the self-consistent potential, which may stop the instability.
Alternatively, the growing mode leads to a new quasi-
1 steady-state solution. We illustrate the origin of the new so-
PH(X)= z.€ oo, J pr(x)dx=1. ®  |ution in the quasilinear approximation. The distribution
function is split into two functions
At the zero-currentp(x) describes a Gaussian bunch with p(x,p,t) =po(X,p,t) + f(x,p,t), with slow and fast depen-
the rms(x?)=Tca/ w3, By the definition ofoy, (x?)=1 at  dence on time, correspondingly. The Fokker-Plank equation
the zero-current, giving then gives two equations:

T=w2/2.  o20.=c2a?(52). 7
Wosl Cg OpWos 0“( ) (7 Ipo y ~ Dazpo a(ppo)
The explicit form of the solution can be obtained analyti- ot " tH(po).po}= 2 "7 ap

o ~{Uw(h. 11,

cally only for a few impedances. In the general case,(Bq. 9
can only be solved numerically.

of
Ill. LINEARIZED VLASOV EQUATION = +{H(po),F} +{Uw(f),po}=0, (10)

The Haissinski solution describes very well the deforma-
tion of the bunch shape witN,, (the so-called potential well
distortion. Generally speaking, it formally exists for arbi- where H(f) means that the self-consistent Hamiltonian is
trary N, . Experiments show thaip?) starts growing when calculated with the functior, and the bar in the first equa-
N, exceeds some threshold value, indicating that above théon means averaging over the fast oscillations. The second
threshold, the Haissinski solution becomes unstable. equation can be simplified by a canonical transform from
Different authors have given different criteria for the on-x,p to the angle-action variables¢,J such that
set of this instability. The threshol,, is usually defined by H(pg)=H(J).
the criterion Equation(10) defines the azimuthal harmoni€g(J),
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particles in the separatrix. This mechanism describes the

f(J,,0)=2 frn(2)e¥Im, nonlinear regime of Landau damping.
" Consider a spontaneous small perturbation to the Hamil-
Ipo U.(J) tonian Eq.(11) that corresponds to excitation of thes azi-
fn(Jd)=— m (11) muthal harmonic of the self-consistent potential:

4 w(J)—(Q/m)’
_ i(Qt—ng)
wherew(J)=dH(J)/dJ, and H(J,¢,t)=H(J)+[V,(J)e +c.cl. (15
deb Close to a threshold of the instability, each azimuthal mode
Un(d)= f ——e M1y, (). (12) can be expected to be independent. This corresponds to the
2 assumption that separatrices produced by individual modes
do not overlap. Oide’s numerical analy$ik?] of the insta-
bility confirms this assumption.
At the zero amplitudéd/,,=0, particles rotate in the phase
plane with frequencyd¢/dt=w(J)=dH/dJ, and the
steady-state distribution is given by the Haissinski solution

Substituting Eq(11) into Eq.(12) gives a dispersion relation
defining real and imaginary parts dfl=m(w,+ivym),
m>0, provided w(J)>0. A mode is unstable ify,,<O.
Note thaty,«dpg/adJ.

Equation(11) describes dependence of a modeJoand,
for small incrementsy,,, shows that a mode is localized 1
around the resonance valde defined byw,=w(J,). The p(J)= Z_e—H(J)/T. (16)
sign of m is the same as the sign 6f becausav(J)>0. H

Equation(9) for the zeroth azimuthal harmonigsg(J) in

the new variables takes the form Suppose now that there is an amplitujewithin the bunch

length for whichew,=w(J,)=Q/n. In this case, the pertur-
0. fF) 1 bationV, in the Hamiltonian produces a resonance and can-
a1 dUw(T) n | ; o
+ 23 not be removed by a canonical transformation. As it is well
J I 13 known, however, the problem can be solved by reducing it to
(13 a time-independent problem. This can be done by a canoni-

The last term in the RHS describes the feedback effect ofal transformation to the coordinatga,
a mode on the distribution function:

dpo _d J dpo

Tt 93| P w3y a3 " Yaleold)

J=J,+q, a=¢—w/it+é—argV,/n. (17

1 Es 2
dUw(f) _ 2m7m|Um(J)| apoe—Zmymt_

P _(w(J)—wr)z-i-yZm Tl (14 Here, é&=m/n or £=0, depending on the sign of

w/=(dw/dJ); , andV,=|V,|e'¥¥n. The new Hamiltonian

This term can be combined with the term proportional toiS the Hamiltonian of a pendulum
diffusion coefficientD; it can, therefore, change the bunch
temperature and change the self-consistent potential. As a
result, the unstable growing mode may either be stabilized or
it may decay.

There is, however, another possibility: the distributionwheree can be considered as a constant,
function can come to a new equilibrium wheg,—0. The
modification of the distribution function corresponds to the
well-known results of the quasilinear theory in plasma:
dpglddey,—0 atJ=J,. It is closely related to the Van-

Kampen waves in the theory of Landau damping. This solu- |t is convenient to introduce a parameterdefining the
tion is considered below. energy

q2
H(q,a)zm—ecos{na), (18

1
=2Vl 37 =lofl. (19

IV. RESONANCE SOLUTION 2¢ 4M e .

H=—, q==* \/—2[1— k?sirf(nal2)].  (20)
Here we show that the Fokker-Plank equation has, in ad- K
dition to the Haissinski solution, another solution, which we
call the resonance solutidé]. We use notatiom,, for this
solution following Meller’s study7] of the thermal instabil-

ity.

The motion with «>1 is bounded in the range
|sin(ha/2)| < 1/k, corresponding to motion within a separa-
trix. Motion with the energy 8.«<<1 is unbounded; it cor-
Suppose there is an azimuthal mode excited to a finité€SPONdS to particles above the separatrix withJ, for the
amplitude, with frequency2. Such a mode can be consid- UPPer sign, and below the separatdixJ, for the negative
ered as the periodic perturbation for particles in a bunchSi9n in Eq.(20). L ,
Resonance particles, with synchrotron frequencies 1€ resonance Hamiltonian E(L8) can be made inde-
»(3)=Q/n, if there are any, may be trapped in a separatrix.pe”de_nt of phases using a ca_monlcal transform to a variables
Motion of the trapped particles produces a periodic modula!# With the generating function
tion of the wake field and of the bunch density. We want to
find a self-consistent solution where resonance particles pro- O(r,a)= +f /ﬂE(”_a K) 21)
duce a periodic perturbation supporting trapping of these ' n 2 2
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whereE is the elliptic integral; see Appendix A. The Fokker- Replacing integration overdrdy by integration over
Plank equation in the variablesy has the approximate form dadk,
[see Eq(78) in Appendix B

4Me
ap 9 IX 2 drdlﬂzwdadK, (31)
L HI) o) ¢=yd—[T<(— >+I’p . @ g
ot , ar E
and introducing the new variable= \4M €/ k2, we get
The equation for the zeroth harmoni¢r) averaged over '\ A In
the phasey has the time-independent solutipr fa(d) =sgn(w,) e n D (q,e€), (32)
1 1 where
pm(r)=s—exp— =[H(r)+a(r)], (23
Zwm T w o V4M edk
a0~ [ dpcoszp) | __
whereH(r)=2¢/k?(r), - 0 2mk?\1— k%sirtB
(33
1
oc=*2w,VeMO(1— k)| — V¥ (k) ]|, (29 AMe
K + 2
pm(x) 6l q— \/ P (1-« sz,B)J
and
_ 4M e ”
1 1|2¢ +pu(x)6 g+ 2 (1—«?sirp) || (34
pm(r)=s—exp — =| —=*20,VeMO(1— k)
ZM T K
. Here, B=na/2, py(x)=p+ at k<1, and py(x)=ps at
x ;—\I’(K)) } 25 <=1
1 2 _
. =—¢g~ 1/T[p /ZM:wrp+m,ps\I’(ps/p)],
Here p=(p) Z0
idu = 1 )
\I’(K)zl— J'KF F(U)_l , ‘I’(O)=069 (26) Ps(p): mefp (q,B)/ZMT, (35)

The new solution can be expanded in azimuthal harmonics ifyherep= \/4eM/«. The limits of integration in Eq(34) for

J=J,+q, ¢ variables q<0 are given by the conditiog=J—J,>—1J,, and de-
pend onkpi,=v4M e/er and ko= kpin/ 1+ sz in-
pm(1)=po(J) + 2 f(d,t)e”Ime. (27) The function®(q, €) describes the spatial structure of the
m#0 mode. It has a logarithmic singularity at the center of the

separatrix and behaves d@=4Meée /g at large
The azimuthal harmonick,(J,t), J=J,+q is > peM. pm(a)/q geq

dd'dy The zeroth harmonigy(J) in Eq. (27) can be similarly
fm(J,t):f ¢ 8(3—-3)eM p(3", ¢’ 1), (28) dgfined:po(J)fd)o(q,e), where®, is given by the expres-
2m sion Eq.(34) with the factor cos(B) replaced by one.

i . ) . Far away from the separatrix, wher&<1, but
where we introduce an additional integration q== Va4Me/ « is finite,

dJ' 6(J—-J')=dqgé(g—q’). The resonance solution
p(J,¢)dIde=drdypy(r) gives

1
_ & A—1T[H+0]
po(J) ZMe ,

drd .
fm(J,t)=f%5[q—q(r,z//)]pM(r)e'm‘/’“*‘”, (29 )

H(r)—i—a(r):;—M—Fw,qIZwr\/m‘I’(O). (36)
where q(r,¥) is defined in Eg. (20, and
¢>(r,zp):wrt.+ a(r,p)—&+argV,/n. " The resonance distribution E(B6) is different from the
If there is only one resonance(J)=/n within the | aissinski solution: the number of particles increases at am-
bunch rms size, averaging over fast oscillating terms Ieaveﬁlitudes larger than the resonance amplitilie and de-
one nonzero harmoniep=n: creases at the amplitudds<J, , compared with that of the
Haissinski solution. There is a finite transition region with
dimensionAJe \/eM that corresponds to a finite separtrix at
i drdy J=J, . Equation(36) written in variablesx,p is not factor-
= —Sgr(wr')e'arg\/”f ﬁe'n“(r’w)m(f) ized, therefore, the rms energy spread) is different from
the rms&? of the Haissinski solution. The result looks like
X o[g—q(r,¥)]. (30)  bunch heating, although the bunch is described by a steady-

fn(q):fn(Jr_ant)e_m’t
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FIG. 1. RMS(67) for the resonance solution. | , | ,

e. For the estimate, the average was calculated as the average
of wel+w’J? with normalized distribution functions .
pu=(LZ)exd—HE)IT] and py=(1/Zy)exp{~[H() FIG. 2. R n(J, ,J;) as a function of), for n=2 andn=3.
+2w,/eMW(0)]/T}. In the first case(p?/T)=1; the aver-
age calculated in the second case is shown in Fig. 1.
Equation (23) is derived for the case of a single reso-
nance. It can be generalized for a case of multiple noninte
active resonances

The amplitude of the perturbatioa can now be deter-
mined from the condition of self-consistency. The self-
[consistent potential Eq2),

Unmn [ dxdppx! pOSL —x00], (40)
1 1

po()= Z-exp= 3 HID)F 2 20 V&MV (0),
(37

where summation is over all resonandes<J starting from Uw(x,1) =2 Vin(J,)exp (Qt—me). (41)
J=0.
It should be noted that for consistency, parameigrand  Equation(19) then defines in terms of the amplitud®,,,
o, should be defined for the distribution E(B6). In the
present simulations these parameters are taken for the
Haissinski distribution, which differs from E¢B6) by a term
of the order of\/eM, which can be taken into account by
iterations. where
The new solution is the result of filamentation of azi- v d¢ Z(0)
muthal harmonics of the course-grain distribution function le(J"J):COJ —— —CF(£,3)Cw(L,d) (43
pm(r,yt), starting from the initial conditionpy,(r,,0) —2m
=pn(J). The averagednth harmonic

can be expanded in the azimuthal harmonics

6:—4’77)\J' dqg’'®(q’,e)R,n(J,+q',d,), (42

and
m _ m
<pM(t)>_f drpM(r,t) Cm(V,J):fgﬁeim¢eiva'ox(J,d))/Co_ (44)
T
dgdr .
= [ e M 3] G Note that
decays in time agp (t))oexy —(MET/2M)t2]. Ch(v.d)=C_m(=7,J),
Equations(27) and (32) show that the steady-state reso- . , ,

nance solutiorp(r) corresponds in thd, ¢ variables to a Rim(3",3)=R_1-n(3",3)=Rn(3",9). (45

combination of a distorted Haissinski distribution, E§6), ) L L

plus a time-dependent resonance harmdni@)e ("¢~ 2V, Ina Illnear approximationr, ,, is given by Eq.(C6).
describing particles trapped in a separatrix. Other harmonics, 'LiS €asy to see that, fos—0, d=e for g>ps, and®
equal on average to zero, may be important as well. The first Ve for 4<Pps, a/ps—const. Hence, the RHS in E(#2) is
harmonics, in particular, defines the time-dependémgeof proportional toe, and the nonzero solution exists only for

the bunch centroid, sufficiently large\. Figure 2 shows dependence Rf,, on
J, for two azimuthal modesm=2 and m=3, and LEP
(X)=Asin(w,t+argf,), (399 broadband impedandsee below.

Which one of the two solutions, the Haissinski solution
with amplitudeA= [dJf,(J)V2J/ wq. Eq. (16) or the resonance solution E@5), is stable depends
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FIG. 3. Wake potentiaWW(z) and S(z) for LEP.

on the minimum of the free energh=E/T—S, whereE is
the average energy per particE=(H), andS is the en-

tropy, Jr Jr
S=—(Inp)= _J dxdpp(x,p)Inp(x,p). (46) FIG. 4. Difference of free energies® and lines corresponding
’ ' to the condition of self-consistency E@2) for modesn=2,3 and
: . differentNg.
The difference of the free energies depends on the param-I erentNe
eterse; and onw,2M/T. Eq. (42) is equal to 0.9, 1.0¢, and 1.k. These lines are
The free energy for the resonance solution is plotted for two azimuthal modesn=2 and m=3. The
1 maximum ofA® in the upper right corner of the plot can be
dy=—e—InZy— ?<0>, (47) approached only along these lines. Figure 4 shows that, at

smallNg, the maximum reachabled corresponds to small

) i amplitudes of the perturbatiosny and the distribution is, ba-
where the angular brackets mean averaging with the resqca|ly, the Haissinski solution. The situation is different

nance solution Eq(25). Free-energy Eq(47) should be \yhen o' approaches zero. In this case, large amplitudes of
compared withd, . the free—energy for the Haissinski distri- . 5. possible and, more than that, E4g) has two solutions
bution calculated in the rotating frame for an azimuthal mode. At a giveh®, these two solutions
©. have different], , i.e., different frequencies, = w(J,). This
H_< ! > (48) difference is, however, small due to small. The frequen-
cies change while the amplitudes of perturbatiorgrow
adiabatically and they become closer to each other. It is rea-
sonable to expect that, eventually, the separatrices of both
solutions will overlap and destroy each other. The overlap-
ping generates stochastic layers and increases the entropy of
the system, which may change the temperature. The filamen-
tation and synchrotron radiation damping bring the system
back to the original state, with the Haissinski distribution
function. The process then repeats itself displaying large am-

i plitude nonlinear oscillations observed in experiments. As
Z/n=0.250 and resonance frequency 2 GF&. The wake .5 1o seen from Fig. 4, the overlapping of the separatrices

potential and the functioB(x) of the Haissinski solution are ¢ jitferent azimuthal modes is possible, but is less impor-

shown in Fig. 3. Results of the Haissinski calculations fori; .+ than the overlapping of different solutions of E42)

LEP. are given in Table I. : ) for the same azimuthal mode. It is worthwhile to mention
Figures 4a)-4(d) show results of numerical calculations 5y gjige[12] came to a similar conclusion when solving

. . _ 0
for LEP with Ng in the rangeNg=(21.1-36.5)x 10'°. The numerically the linearized Vlasov equation. He also con-

contour lines of a constalt® are plotted in plan& and — ¢},4eq thatw’ =0 may be considered to be the indication of
Jr . They are superimposed with the lines where the RHS ofgiapility. This criterion can be expected because the stable
(elliptic) and unstabléhyperbolig points of a separatrix for
the resonance Hamiltonian E@L8) in the planea,q inter-

change wherw’ changes sign.

= T
or &,= —InZ,—(w,g/T) where brackets mean averaging over
pu given by Eq.(16). Equation(48) takes into account the
transform given by Eq(17).

The differenceAd®=®,— P, was calculated numeri-
cally for LEP parametersE=45 GeV, C=26.66 km,
6=1.2x10"3, «=3.86x10 % 0,=2.0 cm. The nominal
bunch current 0.75 mA corresponds Ng=4.2x 10'%. The
broadband impedance is described by @e 1 model with

TABLE |. Variation of the parameters of the Haissinski distri-
bution with Ng .

NgX 10 V (MV) wq »' 2P 4B0? o?lBw? Figure 5 s_hows the_ contour plot of’(N,_V) in t_h_e plane
Ng,V. Crossing the linew’=0 leads to instability. Area

21.1 350 104 0.35610% -0.0606 0.618 ©’'<0 atlargeNg does not necessarily mean bunch stability,

25.3 350 1.05 0.24410 %> -0.0727 0.741  but may correspond to another mechanism of instability re-

29.3 350 1.06 0.89810°° -0.0827 0.848 lated to appearance of the second minimum of the self-

33.0 350 1.03 0212109 -0.0459 0.693 consistent potential.

36.5 350 1.12-0.125¢10°%% —0.152 0.132 Figure 6 shows dependence af, calculated for the

Haissinski solution, on temperatufle ' increases withr
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FIG. 5. Contour linew’'(N,V)=0 in the planeV, Ng.

for Ng>N;, and decreases forN<N,,, where
Nn=18.X 10'%for LEP parameters. Decreasiag may lead
to a thermal instability.
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The amplitudes of the sidebands are equal if there is revers-
ibility in time, p(z,t)=p(z,—t). Unequal sidebands may be
related to the mechanism of the instability.

Bunch spectrum measured by a BPM corresponds to the
spectrum of a bunch current

VBPM(w>o<m=Zw f dte(@Merets (1), (51)

where
Sm(t)= j dxd pp(X,p,t)e_im(“’rev‘To/Co)x

=f dJdgp(J,¢,t)e M @revo0/CoX(16)  (52)

Substitute expansion EQ7) over azimuthal harmonics and
use the definition of Eq(44). The zeroth harmonigg(J)
gives the signal at the revolution harmonics. Harmonics
Pm, With m#0, give

Sm(t) = go f dJ[f ()€ “r'C_(Mwre, ,J)

For the above speculation it is important that the system
adiabatically follows variation of the parameters, in particu-
lar, the variation of. This will be true if the radiation damp-
ing is sufficiently large; otherwise, the rapid growtheofnay The first term gives the signal at the revolution harmonics.
induce some oscillations around the resonance solution. Thihe amplitudes of the upper and lower sidebands at the fre-
may explain the difficulty in obtaining sawtooth oscillations quenciesm =maw,e, * (k/n)( are proportional to
in numerical simulations.

+fi (e "' C(More, ,I)]- (53

V= f dIf () Ch(Mwye, ),V
V. BUNCH SPECTRUM k>0

The experimentally observed bunch spectrum quite often
has sidebands with unequal amplitudes that change in time in :go 2m [ dI(NC (Mg, ), (54)
an irregular way. This result is quite unusual. The bunch
spectrumV(w) at thenth revolution harmonic has sidebands where
5<w—”wrev—9>f p(Q.2)e71dz fk(J>=f%ﬁa[a—x—qu,w)]pmmeika“'@.
(55

+5(w—nwrev+ﬂ)f p*(Q,2)e""7Rdz, (49 , , ,
Notice thatC_,=(—1)*C,; see Appendix C. If there is

only one azimuthal harmonit,(J), as in Eq.(30), f,=f}

defined by the h i f the bunch distributi
elined by the harmonics ot the bunch distribution and the amplitude¥ .. are equal, providing the difference in

p(z,)=p(Q,z)e "M+ p*(Q,z)e' . (500 the impedance&(w) at the sideband frequencies is negli-
gible. The situation is different if there are two solutions of
i I I i Eqg. (42). In this case, thenth azimuthal harmonics corre-
4= | sponds to two radial modes
3
X0 fo=[(—)"f &'+ T e 12 C (M, ,J;) +(1—2),
2r (56)
3 , : :
ER with separatrices located at the amplitudgs. For small
© o', the frequencies of two modd3, ,= w(J; ) cannot be
i | | | resolved experimentally. The BPM signal would have time-
_20 5 10 15 20 25x1010 dependent beating with frequen&yQl=0Q,—-Q, and un-

N equal amplitudes

FIG. 6. Dependence ab’ on Ny for different temperature$

\ V+ = flC;_‘
and fixed rf voltage/=350 MV.

1+ fﬁ(%)*emm
fai 1 Cy
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fnz Cz> . 2e€ dH v €
V_o=f,Cq| 14 —| ==|e 120, 5 == " /=
St R S Yo =7 A= 7@ Ko Vi Ay
because the coefficient, are complex due to the nonlin- r= i [eM E(K), ﬂ: — i /eM&S), (A2)
earity of the self-consistent potential; see EQ5). ™ K dk ™ K
Another possible explanation of the unequal sideband am-
plitude may be related to the excitation of the motion of the ™ Na Iy & eM
: : Y= k|, = —, (A3)
bunch centroid for the resonance solution. nK(x) | 2 da  gK(k) YV k
whereq is defined by Eq(20).
V1. DISCUSSION For k>1 (bounded motion
The general statement for a system in thermodynamic 4
equilibrium is[11] “No internal macroscopic motion is pos- r=—JeM[E(l/k)—(1—1/k?K(1/k)],
aw

sible in a state of equilibrium.” However, the system under

consideration is specific. First, thé-particle system does

not have a Hamiltonian because the third Newton’s law is ﬂ: _ f\/E—K(ll") (A%)
not applicable for the interaction with the wake potential. A dk s

particle in a self-consistent potential can, nevertheless, be

described by the Fokker-Plank equatidf]. The resonance T _ na\ 1 Ay meM
solution appears as a result of spontaneously breaking sym-¥/= i—nK(llx) F|arcsi kSISl G qK(Lk)

metry. This solution describes a self-consistent regime when (A5)
particles trapped in a separatrix of an azimuthal mode with

eigenfrequency() produce a perturbation of the self-  Elliptic integralsK, E and elliptic functions~, E are de-
consistent potential equivalent to the excitation of such dined in Gradshteyhl0Q].

mode. In the rotating frame, the resonance solution is a

steady-state solution. In the origindi¢ variables, this cor-  APPENDIX B: TRANSFORMATION OF THE FOKKER-

respor)ds to a certain.combination of a modified zgroth apd PLANK EQUATION
nth azimuthal harmonics if there are resonance particles with
frequenciesw(J)=Q/n. First, we follow Shonfeld[6] to transform the Fokker-

At large bunch current the resonance solution may hav&lank equation, Eq(4), to the variables, ¢.
lower free energy than the Haissinski solution. The minimum  The following identities are valid for an arbitrary function
of free energy and the condition of self-consistency defind=(X,p.t):
the parameters of the resonance soluéoand (). A bunch
in the new state would have an rms energy spread different f:{x Fl, = {x.F} :i(ﬂ_XF) _i(a_XF)
from the rms energy spread of the Haissinski solution. The  dp v RN AP apl\ad |’
process of transformation from one solution to the other can (B1)
be adiabatic, provided the damping time is large. A simple
nonlinear dynamics exists only for a single resonance. It i$0 that, for the phase average values,
easy to speculate that, depending on the potential well dis-
tortion and parameters of the bunch, several resonances can <i> :i<‘9_XF> (B2)
be excited simultaneously. The interaction between reso- pl I\ |’
nances at large amplitudes may lead to overlapping of the ) _
separatrices, and their destruction. In this case, trapped paf particular, the RHS of Eqd4) is
ticles become free, filament, and produce a dynamic heating

i itin e o &p app a ] ox[ ap
of the bunch, which must be distinguished from the quasis _ apP RPN _ 9 P
- - RHs= | |D ==+ 74 D——+vapp| |-
tatic change of the rms energy spread of a single mode. ap ap dJ\dp| ~ Ip
(B
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The identitydx/d¢p={J,x} =3Il Ip gives

APPENDIX A: SOME RELATIONS FOR A NONLINEAR

oX 0J
PENDULUM

J
DQZD%Z%(PJ)—J- (BS5)
The following relations are useful:

For 0<«<1 (unbounded motion Equations(B2) and (B5) give, for the phase average,
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IX d | Ix d X X H(x,p,t)=H(J,¢,t)=H(q,a) + ©,(I;+q)
—J=Jﬁ + -J

_ = _pJ _ _—
ap | 9\ ag dep ¢ =H(r)+ w,(J,+q), (B17)

(B6)

Comparison of the left- and right-hand sides defines the se
ond term in Eq(B4):

e/yhereH(J,qﬁ,t) and H(g,a) are defined in Eqs(15) and
(18), correspondingly. The momentum

ox\ D= (X, p= (X H + 0, G} gy = ot e + a0 .01,
@ =J. (B7) P ¥, Y
(B18)

The momentunp can be written or p=wpy Xl I+ wydxldd, wherewy, = JH/dr. Hence,

o _ Hl= J _X B8 — X = d+ B19
P ap —{X, } w( ) 9¢, ( ) r <p > wp wV. ( )

ided the Hamiltonian i T
proviae € miltonian 1S he solution of EQ(B].G) for the zeroth azimuthal harmonic

p? IH p(r) in a steady-state is
H(x,p)=%+U(X)=HQ), wd)=—_3. (BY

PM(r)= ieflﬂ'[H(r)Jr(rM(r)]’ (BZO)
Equations(B7) and (B8) define the first term in EqB4): Zy
< X > (J)< ( &x>2> ; (610 whereao,, is defined by Eqs(B16) and(B19) [7],
— e w — =
The Fokker-Plank equation takes the form dr _ “ra- (B21)

The coefficientsy andd can be found from the canonical
Dw(J) ﬁ*’ vadp(J) | (B11) transformx,p— ¢,J, which defines the coefficients of ex-
pansion
Consider now the Hamiltonian E¢L5). The RHS of the
Fokker-Plank equation fop=p(r) can be written inr, _ ime
variables similar to Eq(B4): X(J,¢) 2 Am(J)E. (22

ax\2\ ap IX Then,
of [ e rdefy)o] 2
X X da dq day 4
_ R im¢ . o L LLY P 11
Similar to Eq.(B7), the identitiesox/dyy={r,x}=dr/dp and Er) 2 imane™, oY % ['m az//+ oy dJ }e ’

&p+ H _&
- HHpt=23

J
XRHS= 5

(B23)
ax ar J
Pow = Pop ™~ o %(pr) wherea andq are defined in Eq(17). Averaging over fast
oscillations gives
_ d [ dx d [ IX 5813
T el a P B o ) a2
i m|an, s |mamama¢ .
give, after averaging ovep, (B24)
IX d IX The last term here is equal to zero becaw@e ) is periodic
Py =t Pau /" (B4 \ith 4. For the same reasofx/dy)=0 in the separatrix,
and is equal ta= 1 for q= 0 outside of the separatrix. Hence,
Hence,
IxX dIX
Ix <£a_¢>:i0(1_")2 m?|la,|?, q+0. (B25)
pﬁ =r. (B15)

The average

|-

The Fokker-Plank equation takes the form
o o] [P\ aq\?
ax\2 m?|ay| a0 [\ aw
T<((3’_¢ >+rp

The coefficientd=((dx/d)?) can be related to the average because the cross-tern{§da/di)(dq/dy))=0. The first
v={(dxI ) (x/d$)). Consider the Hamiltonian term

!
m

a 2

d

ap <
— HHP) = a5 . (819
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G i SIS <1 B2 dd_ (3B 5| A c3
ol | (K)E(x), &<l (B27) Gt 3 7302 14 (C3
The average In this approximationC,,(v»,J) is
aq\2 M2 _ ivoga
<<a—l/,) >:eM ?<Sln2(na)>¢,, B28) Cm(»J)=Jn(va)| 1+ 202 A
and is small for smalk. Neglecting this term, we get +I1W%A2[Jm,2(va)+\]m+2( va)] (C4)
2
v
—=*+(1l—K)————. (B29) vay (B a?
d AKTOE() | B | A3 (0213 0]
Equation(B21) then gives Eq(24), (CH
1 wherea= oyA/cy, andJ,, is the Bessel function. Note that
om==0(1=«) 20VeM| —=W(x)|. (B30  Cy(-»,d)=(—1)"Cp(,d), C_p(w)=(—1)"Cpry(w), and

APPENDIX C: DERIVATION OF R;,

CoefficientsC,(v,J) in Eq. (44) are given in terms of a

R _m(3,3)=(—)""Rn(J",J). Hence, R:,=R,,, and
the RHS of Eq.(42) for € is real.
In the linear approximation,

trajectory x(J,¢) of the Hamiltonian Eqg. (1), Ran(J,d)=c¢o w% Imz(v)\]ﬁ(,,a), (C6)
H(J)=H(x,p)=p%2+U(x). Approximate the self- o m
consistent potential by a polynomial For broadband)=1 model of the impedance
02 (X—Xmin)?  «a B

U(X):Umin+—m+_(x_xmin)3+_(x_xmin)41 Z( ):_ié 1 (C7)

2 3 4 @ w—w,— 1y, oto,—ivy,|

(CD
with y/ w,=1/2,

with parameter$) pin, Xmin, @, andp depending oM. For yien
small nonlinearities, the trajectory can be written in series R (] 7)= 2272\ w, oode2 wpa
over A=2J/ w: an(J, )_Zo N oo x 2" cg X

. aA  aA 1-x 1+x

x(J, )=A(sm — ——» ———>C0S _
¢ T T vz s @errua ©¥

A2

a2 )
—W(S—wz—E)SIH3¢+”' y (CZ)

whereZ/n defines the inductive low-frequency behavior of
the impedance ab<w, Z/n=(2ifwe, /w2)v.
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