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Stability of the steady-state bunch distribution described by the Haissinski solution@J. Haissinski, Nuovo
Cimento18B, 72 ~1973!# is studied above the threshold of microwave instability. It is shown that instability
may lead to a new self-consistent state corresponding to particles trapped in a separatrix of an unstable mode.
The free energies of the two solutions are compared. The relaxation oscillations between the new and Haissin-
ski solutions are possible and may be related to the sawtooth instability observed recently in the experiments
@P. Krejcik et al., ~unpublished!#. @S1063-651X~96!11109-0#

PACS number~s!: 41.85.2p

I. INTRODUCTION

The microwave instability is one of a few problems of
accelerator physics which is not fully understood today. The
instability is usually described as an increase of the rms en-
ergy spread of a bunch whenNB , the number of particles per
bunch, exceeds some threshold value. Because the equilib-
rium temperature is determined by the damping and the noise
of the synchrotron radiation, which is normally independent
of NB , increase of the temperature indicates that there is
some additional noise or a mechanism which pumps energy
from the longitudinal motion to the uncorrelated single-
particle motion.

Recent experiments@2,3# found new features of bunch
behavior at the threshold of the instability, such as relaxation
oscillations of the rms bunch length~the sawtooth instability
of the SLAC damping ring!, and large periodic oscillations
of the rms size and bunch centroid in LEP. Similar phenom-
ena were also previously observed in different laboratories.
Such a behavior is not trivial for a system with damping,
which usually goes, after some relaxation time, to an equi-
librium steady state. It is reasonable to think that these phe-
nomena are related to the microwave instability and can give
insight to its origin. In fact, the new instabilities can be con-
sidered as a special case of the microwave instability when
only a few azimuthal modes are involved, which may sig-
nificantly simplify theoretical consideration of the problem.
A possible phenomenological explanation of the sawtooth
instability may be based on the idea of the ‘‘overshoot phe-
nomena,’’ where an unstable mode is stabilized by nonlinear
processes at large amplitudes or by bunch heating produced
by decaying mode. Radiation damping and filamentation
brings the system back to original state. The relaxation os-
cillations may arise under proper relationship between the
growth rate of an unstable mode, its filamentation time, and
the synchrotron radiation damping time. When there are
many interacting unstable modes, the sawtooth instability be-
comes a microwave instability. Although generically this is a
correct picture, a detailed model of the processes is needed.
Our attempts to obtain the sawtooth behavior within the qua-
silinear approximation in numerical experiments were unsuc-
cessful: the system asymptotically approaches a steady-state
with higher temperature.

Study of the microwave instability is usually based on the

linearized Vlasov equation. This allows us to find a threshold
NB , spectrum of the eigenmodes, and the rise time of insta-
bility. This approach does not, however, describe the dynam-
ics at large amplitudes and is not sufficient to explain the
essential nonlinear phenomena, such as the sawtooth insta-
bility. Numerical tracking is not very efficient in describing
the sawtooth instability, probably because the number of par-
ticles involved is a small part of the total bunch population
and because simulations with a realistic damping time are
computationally prohibitive.

The sawtooth instability indicates the existence of two
steady state solutions for largeNB . Depending on the damp-
ing time, the system may have relaxation oscillations be-
tween these two solutions or may drift adiabatically from one
solution to another one provided the damping rate is large
enough. Recently, Baartman and Dyachkov@4,5# suggested a
model of the sawtooth instability driven by quantum fluctua-
tion in a case of a self-consistent potential having two
minima. The mechanism considered in this paper is different;
it is related to a nonlinear self-consistent regime arising as a
result of a nonlinear resonance. Consideration follows the
papers of Shonfeld@6# and Meller @7#. Although this ap-
proach does not describe the full time evolution of a bunch,
it gives some understanding of the nonlinear dynamics of the
unstable modes and, hence, is complimentary to the studies
of the linearized Vlasov equation.

II. HAISSINSKI SOLUTION

A single-bunch longitudinal dynamics of particles in a
storage ring may be described by canonical variablesx,p,
wherex5z/s0 is the position of a particle in a bunch in units
of the zeros current rms bunch lengths0, and the canonically
conjugated momentum p52ad/s0, proportional to
d5DE/E and the momentum compaction factora. The co-
ordinatex50 corresponds to the equilibrium rf phasec rf ;
x.0 for a particle in the head of a bunch. The Hamiltonian
in these variables is

H~x,p,t !5
p2

2
1U~x,t !, U~x,t !5U rf1UW . ~1!

The total potentialU(x) is the sum of the rf potential
U rf.v0s

2 x2/2c0
2 and the self-consistent potentialUW :
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UW5lE
x

`

dx8r~x8,t !S@~x82x!s0#. ~2!

Here v0s5v revns is the zeroth current synchrotron fre-
quency, the distribution functionr(x,t)5*dpr(x,p,t) is
normalized to 1,*dxr(x)51, andS(z) is an integral of the
wake functionW(z), S(z)5*0

zdz8W(z8). W(z) defines en-
ergy loss per turn of a particle trailing another particle at the
distancez: DE(z)52Nbe

2W(z). The wakeW(z)50 for
z,0, and can be expressed in terms of the beam impedance
Z(v) that has poles in the upper plane ofv. The factorl
depends on the number of particles per bunchNb ,

l5
aNbr 0
2pRgs0

2 . ~3!

The distribution functionr(x,p,t) is a solution of the
Fokker-Plank equation

]r

]t
1$H,r%5FD ]2r

]p2
1gd

]

]p
pr G , ~4!

which includes effects of diffusion and damping due to syn-
chrotron radiation not described by the Hamiltonian. Deriva-
tion of the Fokker-Plank equation and further references can
be found in the recent paper@8#.

Haissinski solution@1# is the steady state solution of Eq.
~4!,

rH~x,p!5
1

Zt
exp2H~x,p!/T, ~5!

where T5D/gd . Equation ~5! can be factorized
rH(x,p)5r(p)r(x). Hence,^p2&5T(s0

2/a)2 and is inde-
pendent on the distortion of the self-consistent potential
U(x). The distribution function is

rH~x!5
1

ZH
e2U~x!/T, E rH~x!dx51. ~6!

At the zero-current,rH(x) describes a Gaussian bunch with
the rms^x2&5Tc0

2/v0s
2 By the definition ofs0, ^x2&51 at

the zero-current, giving

T5v0s
2 /c0

2 , s0
2v0s

2 5c0
2a2^d2&. ~7!

The explicit form of the solution can be obtained analyti-
cally only for a few impedances. In the general case, Eq.~6!
can only be solved numerically.

III. LINEARIZED VLASOV EQUATION

The Haissinski solution describes very well the deforma-
tion of the bunch shape withNb ~the so-called potential well
distortion!. Generally speaking, it formally exists for arbi-
trary Nb . Experiments show that̂p2& starts growing when
Nb exceeds some threshold value, indicating that above the
threshold, the Haissinski solution becomes unstable.

Different authors have given different criteria for the on-
set of this instability. The thresholdNb is usually defined by
the criterion

A2

p

r 0NB

Z0agd2s U Zn U
eff

<1. ~8!

Here n5v/v rev , Z05120pV, and the ‘‘effective imped-
ance’’ (Z/n)eff is related to the machine impedanceZ/n ei-
ther through the experimental ‘‘SPEAR scaling’’ or by de-
fining Z/n as weighted with the bunch spectrum. Other
criteria have been discussed as well that, i.e., the instability
occurs when the slope of the total voltage becomes zero
within a bunch length. Bane@9# successfully used this crite-
rion for calculating the threshold of the microwave instabil-
ity for the SLC damping ring. There have been attempts to
relate the threshold of the instability to the appearance of the
second minima in the potential well at large bunch currents.
Another criterion of the threshold is given byNb at which
the synchrotron frequency as a function of amplitude has
extremum, dv(J)/dJ50. These criteria give different
thresholds of instability. For example, for a self-consistent
potential approximated by a polynomial
U(x)5x2@v0

2/21ax/31bx2/4# with parameters varying
with Nb , v8 changes sign ata2/(bv2).0.9, the second
minimum appears ata2/(bv2).4.0, and the potential at this
minimum is smaller thanU(x) at a2/(bv2).4.5.

Study of the stability usually is based on the linearized
Vlasov equation obtained from Eq.~4! for small
f (x,p,t)5r(x,p,t)2rH(x,p), neglecting the right-hand
side~RHS! of the equation. This gives a homogeneous equa-
tion which defines azimuthal and radial eigenmodes of per-
turbation, and gives their frequencies. The onset of the mi-
crowave instability is related to a mode-coupling, when some
of the eigenfrequencies become complex.

More detailed phenomenology of the microwave instabil-
ity is based on the quasilinear approach that takes into ac-
count the feedback effect of the growing unstable mode on
the self-consistent potential, which may stop the instability.

Alternatively, the growing mode leads to a new quasi-
steady-state solution. We illustrate the origin of the new so-
lution in the quasilinear approximation. The distribution
function is split into two functions
r(x,p,t)5r0(x,p,t)1 f (x,p,t), with slow and fast depen-
dence on time, correspondingly. The Fokker-Plank equation
then gives two equations:

]r0
]t

1$H~r0!,r0%5FD ]2r0
]p2

1gd

]~pr0!

]p G2$UW~ f !, f %,

~9!

] f

]t
1$H~r0!, f %1$UW~ f !,r0%50, ~10!

whereH( f ) means that the self-consistent Hamiltonian is
calculated with the functionf , and the bar in the first equa-
tion means averaging over the fast oscillations. The second
equation can be simplified by a canonical transform from
x,p to the angle-action variablesf,J such that
H(r0)5H(J).

Equation~10! defines the azimuthal harmonicsf m(J),
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f ~J,f,t !5(
m

fm~J!eiVt2 imf,

f m~J!5
]r0
]J

Um~J!

v~J!2~V/m!
, ~11!

wherev(J)5dH(J)/dJ, and

Um~J!5E df

2p
eimf2 iVtUW~ f !. ~12!

Substituting Eq.~11! into Eq.~12! gives a dispersion relation
defining real and imaginary parts ofV5m(v r1 igm),
m.0, providedv(J).0. A mode is unstable ifgm,0.
Note thatgm}]r0 /]J.

Equation~11! describes dependence of a mode onJ and,
for small incrementsgm , shows that a mode is localized
around the resonance valueJr defined byv r[v(Jr). The
sign ofm is the same as the sign ofV becausev(J).0.

Equation~9! for the zeroth azimuthal harmonicsr0(J) in
the new variables takes the form

]r0
]t

5
]

]J FD J

v~J!

]r0
]J

1gdJr0~J!G1
]

]JF]UW~ f !

]f
f G .

~13!

The last term in the RHS describes the feedback effect of
a mode on the distribution function:

]UW~ f !

]f
f5

2mgmuUm~J!u2

„v~J!2v r…
21gm

2

]r0
]J

e22mgmt. ~14!

This term can be combined with the term proportional to
diffusion coefficientD; it can, therefore, change the bunch
temperature and change the self-consistent potential. As a
result, the unstable growing mode may either be stabilized or
it may decay.

There is, however, another possibility: the distribution
function can come to a new equilibrium whengm→0. The
modification of the distribution function corresponds to the
well-known results of the quasilinear theory in plasma:
]r0 /]J}gm→0 at J5Jr . It is closely related to the Van-
Kampen waves in the theory of Landau damping. This solu-
tion is considered below.

IV. RESONANCE SOLUTION

Here we show that the Fokker-Plank equation has, in ad-
dition to the Haissinski solution, another solution, which we
call the resonance solution@6#. We use notationrM for this
solution following Meller’s study@7# of the thermal instabil-
ity.

Suppose there is an azimuthal mode excited to a finite
amplitude, with frequencyV. Such a mode can be consid-
ered as the periodic perturbation for particles in a bunch.
Resonance particles, with synchrotron frequencies
v(J).V/n, if there are any, may be trapped in a separatrix.
Motion of the trapped particles produces a periodic modula-
tion of the wake field and of the bunch density. We want to
find a self-consistent solution where resonance particles pro-
duce a periodic perturbation supporting trapping of these

particles in the separatrix. This mechanism describes the
nonlinear regime of Landau damping.

Consider a spontaneous small perturbation to the Hamil-
tonian Eq.~11! that corresponds to excitation of then-s azi-
muthal harmonic of the self-consistent potential:

H~J,f,t !5H~J!1@Vn~J!ei ~Vt2nf!1c.c.#. ~15!

Close to a threshold of the instability, each azimuthal mode
can be expected to be independent. This corresponds to the
assumption that separatrices produced by individual modes
do not overlap. Oide’s numerical analysis@12# of the insta-
bility confirms this assumption.

At the zero amplitudeVn50, particles rotate in the phase
plane with frequency df/dt5v(J)5dH/dJ, and the
steady-state distribution is given by the Haissinski solution

r~J!5
1

ZH
e2H~J!/T. ~16!

Suppose now that there is an amplitudeJr within the bunch
length for whichv r[v(Jr)5V/n. In this case, the pertur-
bationVn in the Hamiltonian produces a resonance and can-
not be removed by a canonical transformation. As it is well
known, however, the problem can be solved by reducing it to
a time-independent problem. This can be done by a canoni-
cal transformation to the coordinateq,a,

J5Jr1q, a5f2v r t1j2arg~Vn!/n. ~17!

Here, j5p/n or j50, depending on the sign of
v r8[(dv/dJ)Jr, andVn5uVnueiargVn. The new Hamiltonian
is the Hamiltonian of a pendulum

H~q,a!5
q2

2M
2ecos~na!, ~18!

wheree can be considered as a constant,

e52uVn~Jr !u,
1

M
5uv r8u. ~19!

It is convenient to introduce a parameterk defining the
energy

H5
2e

k2 , q56A4Me

k2 @12k2sin2~na/2!#. ~20!

The motion with k.1 is bounded in the range
usin(na/2)u,1/k, corresponding to motion within a separa-
trix. Motion with the energy 0,k,1 is unbounded; it cor-
responds to particles above the separatrix withJ.Jr for the
upper sign, and below the separatrixJ,Jr for the negative
sign in Eq.~20!.

The resonance Hamiltonian Eq.~18! can be made inde-
pendent of phases using a canonical transform to a variables
r ,c with the generating function

F~r ,a!56
4

n
AeM

k2 ES na

2
,k D , ~21!
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whereE is the elliptic integral; see Appendix A. The Fokker-
Plank equation in the variablesr ,c has the approximate form
@see Eq.~78! in Appendix B#

]r

]t
1$H~r !,r%r ,c5gd

]

]r FTK S ]x

]c D 2L 1rrG . ~22!

The equation for the zeroth harmonicr(r ) averaged over
the phasec has the time-independent solution@7#

rM~r !5
1

ZM
exp2

1

T
@H~r !1s~r !#, ~23!

whereH(r )52e/k2(r ),

s562v rAeMu~12k!F1k2C~k!G , ~24!

and

rM~r !5
1

ZM
expH 2

1

T F2e

k262v rAeMu~12k!

3S 1k2C~k! D G J . ~25!

Here

C~k!512E
k

1du

u2F p

2E~u!
21G , C~0!50.69. ~26!

The new solution can be expanded in azimuthal harmonics in
J5Jr1q, f variables

rM~r !5r0~J!1 (
mÞ0

f m~J,t !e2 imf. ~27!

The azimuthal harmonicsf m(J,t), J5Jr1q is

f m~J,t !5E df8dJ8

2p
d~J2J8!eimf8r~J8,f8,t !, ~28!

where we introduce an additional integration
dJ8d(J2J8)5dqd(q2q8). The resonance solution
r(J,f)dJdf5drdcrM(r ) gives

f m~J,t !5E drdc

2p
d@q2q~r ,c!#rM~r !eimf~r ,c!, ~29!

where q(r ,c) is defined in Eq. ~20!, and
f(r ,c)5v r t1a(r ,c)2j1argVn /n.

If there is only one resonancev(J)5V/n within the
bunch rms size, averaging over fast oscillating terms leaves
one nonzero harmonic,m5n:

f n~q!5 f n~Jr1q,t !e2 iVt

52sgn~v r8!eiargVnE drdc

2p
eina~r ,c!rM~r !

3d@q2q~r ,c!#. ~30!

Replacing integration overdrdc by integration over
dadk,

drdc5
4Me

uquk3dadk, ~31!

and introducing the new variablep5A4Me/k2, we get

f n~q!5sgn~v r8!eiargVn /nF~q,e!, ~32!

where

F~q,e!5E
2p

p

db cos~2b!E
0

` A4Medk

2pk2A12k2sin2b
,

~33!

H rM
1~k!dFq2A4Me

k2 ~12k2sin2b!G
1rM

2~k!dFq1A4Me

k2 ~12k2sin2b!G J . ~34!

Here, b5na/2, rM(k)5r6 at k,1, and rM(k)5rs at
k.1,

r6~p!5
1

ZM
e2 1/T @p2/2M6vr p7vr psC~ps /p!#,

rs~p!5
1

ZM
e2p2~q,b!/2MT, ~35!

wherep5A4eM /k. The limits of integration in Eq.~34! for
q,0 are given by the conditionq5J2Jr.2Jr , and de-
pend onkmin5A4Me/Jr

2 andk05kmin /A11kmin
2 .

The functionF(q,e) describes the spatial structure of the
mode. It has a logarithmic singularity at the center of the
separatrix and behaves asF.4AMerM(q)/q at large q
@AeM .

The zeroth harmonicr0(J) in Eq. ~27! can be similarly
defined:r0(J)5F0(q,e), whereF0 is given by the expres-
sion Eq.~34! with the factor cos(2b) replaced by one.

Far away from the separatrix, wherek!1, but
q.6A4Me/k is finite,

r0~J!5
1

ZM
e21/T@H1s#,

H~r !1s~r !.
q2

2M
1v rq72v rAeMC~0!. ~36!

The resonance distribution Eq.~36! is different from the
Haissinski solution: the number of particles increases at am-
plitudes larger than the resonance amplitudeJr , and de-
creases at the amplitudesJ,Jr , compared with that of the
Haissinski solution. There is a finite transition region with
dimensionDJ}AeM that corresponds to a finite separtrix at
J5Jr . Equation~36! written in variablesx,p is not factor-
ized, therefore, the rms energy spread^p2& is different from
the rmsd2 of the Haissinski solution. The result looks like
bunch heating, although the bunch is described by a steady-
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state solution. Figure 1 illustrates the growth of^p2/T& with
e. For the estimate, the average was calculated as the average
of v0J1v8J2 with normalized distribution functions
rH5(1/ZH)exp@2H(J)/T# and rM5(1/ZM)exp$2@H(J)
62vrAeMC(0)#/T%. In the first case,̂p2/T&51; the aver-
age calculated in the second case is shown in Fig. 1.

Equation ~23! is derived for the case of a single reso-
nance. It can be generalized for a case of multiple noninter-
active resonances

r0~J!5
1

ZM
exp2

1

T FH~J!7 (
Jn,J

2v r ,nAenMC~0!G ,
~37!

where summation is over all resonancesJr,J starting from
J50.

It should be noted that for consistency, parametersv r and
v r8 should be defined for the distribution Eq.~36!. In the
present simulations these parameters are taken for the
Haissinski distribution, which differs from Eq.~36! by a term
of the order ofAeM , which can be taken into account by
iterations.

The new solution is the result of filamentation of azi-
muthal harmonics of the course-grain distribution function
rM(r ,c,t), starting from the initial conditionrM(r ,c,0)
5rH(J). The averagedmth harmonic

^rM
m~ t !&[E drrM

m~r ,t !

5E dcdr

2p
eimc2 imvM~r !trH@Jr1q~r ,c!# ~38!

decays in time aŝrM
m(t)&}exp@2(m2T/2M )t2#.

Equations~27! and ~32! show that the steady-state reso-
nance solutionr(r ) corresponds in theJ,f variables to a
combination of a distorted Haissinski distribution, Eq.~36!,
plus a time-dependent resonance harmonicf n(J)e

i (nf2Vt),
describing particles trapped in a separatrix. Other harmonics,
equal on average to zero, may be important as well. The first
harmonics, in particular, defines the time-dependence^x& of
the bunch centroid,

^x&5Asin~v r t1argf 1!, ~39!

with amplitudeA5*dJ f1(J)A2J/v0.

The amplitude of the perturbatione can now be deter-
mined from the condition of self-consistency. The self-
consistent potential Eq.~2!,

UW5lE dx8dp8r~x8,p8!S@~x82x!s0#, ~40!

can be expanded in the azimuthal harmonics

UW~x,t !5( Vm~J,t !expi ~Vt2mf!. ~41!

Equation~19! then definese in terms of the amplitudeVn ,

e524plE dq8F~q8,e!Rnn~Jr1q8,Jr !, ~42!

where

Rlm~J8,J!5c0E
2`

` dz

2p i

Z~z!

z
Cl* ~z,J8!Cm~z,J! ~43!

and

Cm~n,J!5E df

2p
eimfe2 ins0x~J,f!/c0. ~44!

Note that

Cm* ~n,J!5C2m~2n,J!,

Rlm* ~J8,J!5R2 l2m~J8,J!5Rm,l~J8,J!. ~45!

In a linear approximation,Rl ,m is given by Eq.~C6!.
It is easy to see that, fore→0, F}e for q.ps , andF

}Ae for q,ps , q/ps→const. Hence, the RHS in Eq.~42! is
proportional toe, and the nonzero solution exists only for
sufficiently largel. Figure 2 shows dependence ofRnn on
Jr for two azimuthal modes,m52 andm53, and LEP
broadband impedance~see below!.

Which one of the two solutions, the Haissinski solution
Eq. ~16! or the resonance solution Eq.~25!, is stable depends

FIG. 1. RMS^d2& for the resonance solution.

FIG. 2. Rnn(Jr ,Jr) as a function ofJr for n52 andn53.
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on the minimum of the free energyF5E/T2S, whereE is
the average energy per particle,E5^H&, andS is the en-
tropy,

S52^ lnr&52E dxdpr~x,p!lnr~x,p!. ~46!

The difference of the free energies depends on the param-
eterse f and onv rA2M /T.

The free energy for the resonance solution is

FM52e2 lnZM2
1

T
^s&, ~47!

where the angular brackets mean averaging with the reso-
nance solution Eq.~25!. Free-energy Eq.~47! should be
compared withFq , the free-energy for the Haissinski distri-
bution calculated in the rotating frame

Fq5FH2 K v rJ

T L , ~48!

orFq52 lnZq2^vrq/T& where brackets mean averaging over
rH given by Eq.~16!. Equation~48! takes into account the
transform given by Eq.~17!.

The differenceDF5Fq2FM was calculated numeri-
cally for LEP parameters:E545 GeV, C526.66 km,
d51.231023, a53.8631024, s052.0 cm. The nominal
bunch current 0.75 mA corresponds toNb54.231011. The
broadband impedance is described by theQ51 model with
Z/n50.25V and resonance frequency 2 GHz@3#. The wake
potential and the functionS(x) of the Haissinski solution are
shown in Fig. 3. Results of the Haissinski calculations for
LEP are given in Table I.

Figures 4~a!–4~d! show results of numerical calculations
for LEP withNB in the rangeNB5(21.1236.5)31010. The
contour lines of a constantDF are plotted in planee and
Jr . They are superimposed with the lines where the RHS of

Eq. ~42! is equal to 0.9e, 1.0e, and 1.1e. These lines are
plotted for two azimuthal modes,m52 and m53. The
maximum ofDF in the upper right corner of the plot can be
approached only along these lines. Figure 4 shows that, at
smallNB , the maximum reachableDF corresponds to small
amplitudes of the perturbatione, and the distribution is, ba-
sically, the Haissinski solution. The situation is different
whenv8 approaches zero. In this case, large amplitudes of
e are possible and, more than that, Eq.~42! has two solutions
for an azimuthal mode. At a givenDF, these two solutions
have differentJr , i.e., different frequenciesv r5v(Jr). This
difference is, however, small due to smallv8. The frequen-
cies change while the amplitudes of perturbatione grow
adiabatically and they become closer to each other. It is rea-
sonable to expect that, eventually, the separatrices of both
solutions will overlap and destroy each other. The overlap-
ping generates stochastic layers and increases the entropy of
the system, which may change the temperature. The filamen-
tation and synchrotron radiation damping bring the system
back to the original state, with the Haissinski distribution
function. The process then repeats itself displaying large am-
plitude nonlinear oscillations observed in experiments. As
can be seen from Fig. 4, the overlapping of the separatrices
of different azimuthal modes is possible, but is less impor-
tant than the overlapping of different solutions of Eq.~42!
for the same azimuthal mode. It is worthwhile to mention
that Oide@12# came to a similar conclusion when solving
numerically the linearized Vlasov equation. He also con-
cluded thatv850 may be considered to be the indication of
instability. This criterion can be expected because the stable
~elliptic! and unstable~hyperbolic! points of a separatrix for
the resonance Hamiltonian Eq.~18! in the planea,q inter-
change whenv8 changes sign.

Figure 5 shows the contour plot ofv8(N,V) in the plane
NB ,V. Crossing the linev850 leads to instability. Area
v8,0 at largeNB does not necessarily mean bunch stability,
but may correspond to another mechanism of instability re-
lated to appearance of the second minimum of the self-
consistent potential.

Figure 6 shows dependence ofv8, calculated for the
Haissinski solution, on temperatureT. v8 increases withT

FIG. 3. Wake potentialW(z) andS(z) for LEP.

TABLE I. Variation of the parameters of the Haissinski distri-
bution withNB .

NB310210 V ~MV ! v0 v8 a224bv2 a2/bv2

21.1 35.0 1.04 0.356310202 20.0606 0.618
25.3 35.0 1.05 0.241310202 20.0727 0.741
29.3 35.0 1.06 0.895310203 20.0827 0.848
33.0 35.0 1.03 0.211310202 20.0459 0.693
36.5 35.0 1.1220.125310201 20.152 0.132

FIG. 4. Difference of free energiesDF and lines corresponding
to the condition of self-consistency Eq.~42! for modesn52,3 and
differentNB .
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for NB.Nth and decreases for N,Nth , where
Nth.18.31010 for LEP parameters. Decreasingv8 may lead
to a thermal instability.

For the above speculation it is important that the system
adiabatically follows variation of the parameters, in particu-
lar, the variation ofe. This will be true if the radiation damp-
ing is sufficiently large; otherwise, the rapid growth ofe may
induce some oscillations around the resonance solution. This
may explain the difficulty in obtaining sawtooth oscillations
in numerical simulations.

V. BUNCH SPECTRUM

The experimentally observed bunch spectrum quite often
has sidebands with unequal amplitudes that change in time in
an irregular way. This result is quite unusual. The bunch
spectrumV(v) at thenth revolution harmonic has sidebands

d~v2nv rev2V!E r~V,z!e2 inz/Rdz

1d~v2nv rev1V!E r* ~V,z!e2 inz/Rdz, ~49!

defined by the harmonics of the bunch distribution

r~z,t !5r~V,z!e2 iVt1r* ~V,z!eiVt. ~50!

The amplitudes of the sidebands are equal if there is revers-
ibility in time, r(z,t)5r(z,2t). Unequal sidebands may be
related to the mechanism of the instability.

Bunch spectrum measured by a BPM corresponds to the
spectrum of a bunch current

VBPM~v!} (
m52`

` E dtei ~v2mvrev!tSm~ t !, ~51!

where

Sm~ t !5E dxdpr~x,p,t !e2 im~vrevs0 /c0!x

5E dJdfr~J,f,t !e2 im~vrevs0 /c0!x~J,f!. ~52!

Substitute expansion Eq.~27! over azimuthal harmonics and
use the definition of Eq.~44!. The zeroth harmonicr0(J)
gives the signal at the revolution harmonics. Harmonics
rm , with mÞ0, give

Sm~ t !5 (
k.0

E dJ@ f k~J!eikvr tC2k~mv rev ,J!

1 f k* ~J!e2 ivr tCk~mv rev ,J!#. ~53!

The first term gives the signal at the revolution harmonics.
The amplitudes of the upper and lower sidebands at the fre-
quenciesv5mv rev6(k/n)V are proportional to

V15 (
k.0

E dJ fk~J!Ck~mv rev ,J!,V2

5 (
k.0

2pE dJ fk* ~J!C2k~mv rev ,J!, ~54!

where

f k~J!5E drdc

2p
d@J2Jr2q~r ,c!#rM~r !e2 ika~r ,c!.

~55!

Notice thatC2k5(21)kCk ; see Appendix C. If there is
only one azimuthal harmonicf n(J), as in Eq.~30!, f k5 f k*
and the amplitudesV6 are equal, providing the difference in
the impedanceZ(v) at the sideband frequencies is negli-
gible. The situation is different if there are two solutions of
Eq. ~42!. In this case, thenth azimuthal harmonics corre-
sponds to two radial modes

f n5@~2 !nf 1e
iV1t1 f 1* e

2 iV1t#Cn~mv r ,J1!1~1→2!,
~56!

with separatrices located at the amplitudesJ1,2. For small
v8, the frequencies of two modesV1,25v(J1,2) cannot be
resolved experimentally. The BPM signal would have time-
dependent beating with frequencyDV5V12V2 and un-
equal amplitudes

V15 f 1C1* F11
f n2
f n1

SC2

C1
D * e2 iDVtG ;

FIG. 5. Contour linev8(N,V)50 in the planeV, NB .

FIG. 6. Dependence ofv8 on NB for different temperaturesT
and fixed rf voltageV5350 MV.
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V25 f 1C1F11
f n2
f n1

SC2

C1
De2 iDVtG , ~57!

because the coefficientsCn are complex due to the nonlin-
earity of the self-consistent potential; see Eq.~C5!.

Another possible explanation of the unequal sideband am-
plitude may be related to the excitation of the motion of the
bunch centroid for the resonance solution.

VI. DISCUSSION

The general statement for a system in thermodynamic
equilibrium is@11# ‘‘No internal macroscopic motion is pos-
sible in a state of equilibrium.’’ However, the system under
consideration is specific. First, theN-particle system does
not have a Hamiltonian because the third Newton’s law is
not applicable for the interaction with the wake potential. A
particle in a self-consistent potential can, nevertheless, be
described by the Fokker-Plank equation@7#. The resonance
solution appears as a result of spontaneously breaking sym-
metry. This solution describes a self-consistent regime when
particles trapped in a separatrix of an azimuthal mode with
eigenfrequencyV produce a perturbation of the self-
consistent potential equivalent to the excitation of such a
mode. In the rotating frame, the resonance solution is a
steady-state solution. In the originalJ,f variables, this cor-
responds to a certain combination of a modified zeroth and
nth azimuthal harmonics if there are resonance particles with
frequenciesv(J).V/n.

At large bunch current the resonance solution may have
lower free energy than the Haissinski solution. The minimum
of free energy and the condition of self-consistency define
the parameters of the resonance solutione andV. A bunch
in the new state would have an rms energy spread different
from the rms energy spread of the Haissinski solution. The
process of transformation from one solution to the other can
be adiabatic, provided the damping time is large. A simple
nonlinear dynamics exists only for a single resonance. It is
easy to speculate that, depending on the potential well dis-
tortion and parameters of the bunch, several resonances can
be excited simultaneously. The interaction between reso-
nances at large amplitudes may lead to overlapping of the
separatrices, and their destruction. In this case, trapped par-
ticles become free, filament, and produce a dynamic heating
of the bunch, which must be distinguished from the quasis-
tatic change of the rms energy spread of a single mode.
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APPENDIX A: SOME RELATIONS FOR A NONLINEAR
PENDULUM

The following relations are useful:
For 0,k,1 ~unbounded motion!:

H5
2e

k2 , vM5
dH

dr
5

p

kK~k!
A e

M
, ~A1!

r5
4

p
AeM

E~k!

k
,

dr

dk
52

4

p
AeM

K~k!

k2 , ~A2!

c56
p

nK~k!
FFna

2
,kG , ]c

]a
5

p

qK~k!
AeM

k2 , ~A3!

whereq is defined by Eq.~20!.
For k.1 ~bounded motion!:

r5
4

p
AeM @E~1/k!2~121/k2!K~1/k!#,

dr

dk
52

4

p
AeM

K~1/k!

k3 , ~A4!

c56
p

nK~1/k!
FFarcsinS ksin

na

2 D ,1kG , ]c

]a
5

pAeM

qK~1/k!
.

~A5!

Elliptic integralsK,E and elliptic functionsF,E are de-
fined in Gradshteyn@10#.

APPENDIX B: TRANSFORMATION OF THE FOKKER-
PLANK EQUATION

First, we follow Shonfeld@6# to transform the Fokker-
Plank equation, Eq.~4!, to the variablesJ,f.

The following identities are valid for an arbitrary function
F(x,p,t):

]F

]p
5$x,F%x,p5$x,F%f,J5

]

]J S ]x

]f
F D2

]

]f S ]x

]J
F D ,

~B1!

so that, for the phase average values,

K ]F

]p L 5
]

]JK ]x

]f
F L . ~B2!

In particular, the RHS of Eq.~4! is

XRHS5 K FD ]2r

]p2
1gd

]pr

]p G L 5
]

]JK ]x

]fFD ]r

]p
1gdprG L .

~B3!

Substitute here ]r/]p5$x,r%(x,p)5$x,r% (f,J) . For
r5r(J,t),

XRHS5
]

]JFD K S ]x

]f D 2L ]r

]J
1gdK p ]x

]f L r~J!G . ~B4!

The identity]x/]f5$J,x%5]J/]p gives

p
]x

]f
5p

]J

]p
5

]

]p
~pJ!2J. ~B5!

Equations~B2! and ~B5! give, for the phase average,
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K p ]x

]f L 5
]

]JK ]x

]f
pJL 2J5J

]

]J K p ]x

]f L 1 K p ]x

]f L 2J.

~B6!

Comparison of the left- and right-hand sides defines the sec-
ond term in Eq.~B4!:

K p ]x

]f L 5J. ~B7!

The momentump can be written

p5
]H

]p
5$x,H%5v~J!

]x

]f
, ~B8!

provided the Hamiltonian is

H~x,p!5
p2

2
1U~x!5H~J!, v~J!5

]H

]J
. ~B9!

Equations~B7! and ~B8! define the first term in Eq.~B4!:

K p ]x

]f L 5v~J!K S ]x

]f D 2L 5J. ~B10!

The Fokker-Plank equation takes the form

]r

]t
1$H,r%5

]

]J FD J

v~J!

]r

]J
1gdJr~J!G . ~B11!

Consider now the Hamiltonian Eq.~15!. The RHS of the
Fokker-Plank equation forr5r(r ) can be written inr ,c
variables similar to Eq.~B4!:

XRHS5
]

]r FD K S ]x

]c D 2L ]r

]r
1gdK p ]x

]c L rG . ~B12!

Similar to Eq.~B7!, the identities]x/]c5$r ,x%5]r /]p and

p
]x

]c
5p

]r

]p
52r1

]

]p
~pr !

52r1
]

]r S ]x

]c
pr D2

]

]cS ]x

]r
pr D ~B13!

give, after averaging overc,

K p ]x

]c L 52r1
]

]r F K p ]x

]c L r G . ~B14!

Hence,

K p ]x

]c L 5r . ~B15!

The Fokker-Plank equation takes the form

]r

]t
1$H,r%r ,c5gd

]

]r FTK S ]x

]c D 2L 1rrG . ~B16!

The coefficientd[^(]x/]c)2& can be related to the average
v[^(]x/]c)(]x/]f)&. Consider the Hamiltonian

H~x,p,t !5H~J,f,t !5H~q,a!1v r~Jr1q!

5H~r !1v r~Jr1q!, ~B17!

whereH(J,f,t) andH(q,a) are defined in Eqs.~15! and
~18!, correspondingly. The momentum

p5$x,H%x,p5$x,H1v rq%c,r5vM

]x

]c
1v r$x,q%,

~B18!

or p5vM]x/]c1vM]x/]f, wherevM5]H/]r . Hence,

r5 K p ]x

]c L 5vMd1v rv. ~B19!

The solution of Eq.~B16! for the zeroth azimuthal harmonic
r(r ) in a steady-state is

rM~r !5
1

ZM
e21/T@H~r !1sM~r !#, ~B20!

wheresM is defined by Eqs.~B16! and ~B19! @7#,

dsM

dr
5v r

v
d
. ~B21!

The coefficientsv and d can be found from the canonical
transformx,p→f,J, which defines the coefficients of ex-
pansion

x~J,f!5(
m

am~J!eimf. ~B22!

Then,

]x

]f
5( imame

imf,
]x

]c
5(

m
F im ]a

]c
1

]q

]c

dam
dJ Geimf,

~B23!

wherea andq are defined in Eq.~17!. Averaging over fast
oscillations gives

K ]x

]f

]x

]c L 5( Fm2uamu2K ]a

]c L 2 imam* am8 K ]q

]c L G .
~B24!

The last term here is equal to zero becauseq(r ,c) is periodic
with c. For the same reason,^]x/]c&50 in the separatrix,
and is equal to61 for q60 outside of the separatrix. Hence,

K ]x

]f

]x

]c L 56u~12k!( m2uamu2, q60. ~B25!

The average

K S ]x

]c D 2L 5( Fm2uamu2K S ]a

]c D 2L 1 K S ]q

]c D 2L Uam8 U2G ,
~B26!

because the cross-terms^(]a/]c)(]q/]c)&50. The first
term
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K S ]a

]c D 2L 5
4

p2K~k!E~k!, k,1. ~B27!

The average

K S ]q

]c D 2L 5eM
M2

p2 ^sin2~na!&c , ~B28!

and is small for smalle. Neglecting this term, we get

v
d

56u~12k!
p2

4K~k!E~k!
. ~B29!

Equation~B21! then gives Eq.~24!,

sM56u~12k! 2v rAeM F1k 2C~k!G . ~B30!

APPENDIX C: DERIVATION OF Rnn

CoefficientsCn(n,J) in Eq. ~44! are given in terms of a
trajectory x(J,f) of the Hamiltonian Eq. ~1!,
H(J)5H(x,p)5p2/21U(x). Approximate the self-
consistent potential by a polynomial

U~x!5Umin1
v2~x2xmin!

2

2
1

a

3
~x2xmin!

31
b

4
~x2xmin!

4,

~C1!

with parametersUmin , xmin , a, andb depending onNb . For
small nonlinearities, the trajectory can be written in series
overA5A2J/v:

x~J,f!5AH sinf2
aA

2v2 2
aA

6v2cos2f

2
A2

16v2S a2

3v2 2
b

2 D sin3f1•••J , ~C2!

df

dt
5v1S 3b

2
2
5a2

3v2D A2

4v
. ~C3!

In this approximation,Cm(n,J) is

Cm~n,J!5Jm~na!F11
ins0a

2v2 A2G
1
ins0a

12v2 A2@Jm22~na!1Jm12~na!# ~C4!

1
ns0

32v2 S b

2
2

a2

3v2DA3@Jm23~na!2Jm13~na!#,

~C5!

wherea5s0A/c0, andJm is the Bessel function. Note that
Cm* (2n,J)5(21)mCm(n,J), C2m(v)5(21)mCm(v), and
R2 l ,2m(J8,J)5(2)m1 lRlm(J8,J). Hence, Rnn* 5Rnn , and
the RHS of Eq.~42! for e is real.

In the linear approximation,

Rnn~J,J!5c0E
0

`dn

p

ImZ~n!

n
Jn
2~na!. ~C6!

For broadbandQ51 model of the impedance

Z~v!52 i jF 1

v2vn2 ign
1

1

v1vn2 ign
G , ~C7!

with g/vn51/2,

Rnn~J,J!5
2

Z0
S ZnD vn

v rev
E
0

`dx

x
Jn
2S vna

c0
xD

3F 12x

~x21!211/4
2

11x

~11x!211/4G , ~C8!

whereZ/n defines the inductive low-frequency behavior of
the impedance atv!vn , Z/n5(2i jv rev /vn

2)n.
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